

EMPOWERING MACHINE LEARNING

SOLVING THE FORECASTING DILEMMA

Tom Stanek & Jonathan Prantner

Leading applied artificial intelligence and data science company from Ann Arbor, MI

Services and solutions

- Leading Domo implementation and consulting firm
- Custom artificial intelligence kick-start program
- RXA Studio
 - · Media Optimization
 - Voice of Customer
 - Workforce Optimization

Over **70** different customers across North America, Europe, and Asia.

2019 Domo Innovative Partner of the Year

Mucci

IHS Markit[®]

TELETRAC NAVMAN 1906

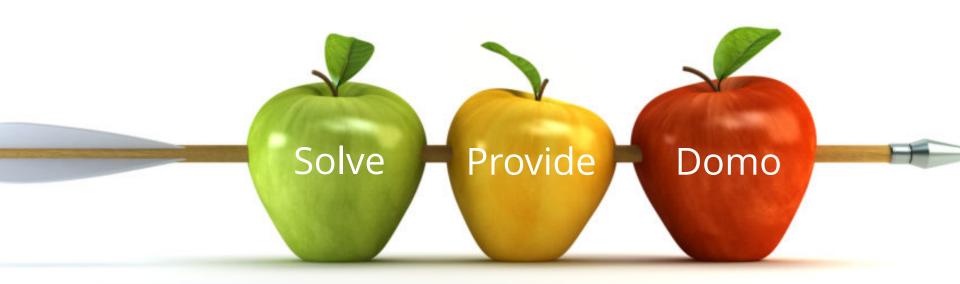
LAWN *
DOCTOR

LAWN & TREE CARE

Consumers Energy

Count on Us

Hays



3 KEY TAKEAWAYS

The Forecasting Dilemma

Now what?

Sales Decomposition

A Primer

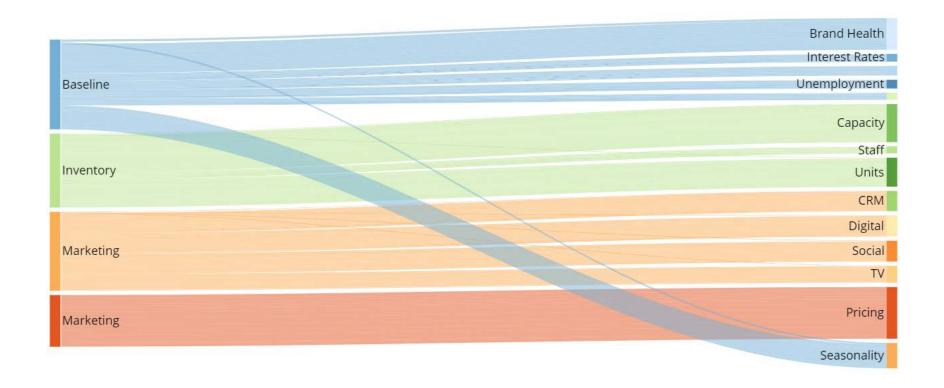
WHAT IS A SALES DECOMPOSITION

Market Mix Models decompose sales

Volume Decomposition

Due-to Analysis

MARKETING MIX FORECASTING



Forecasting Sales using:

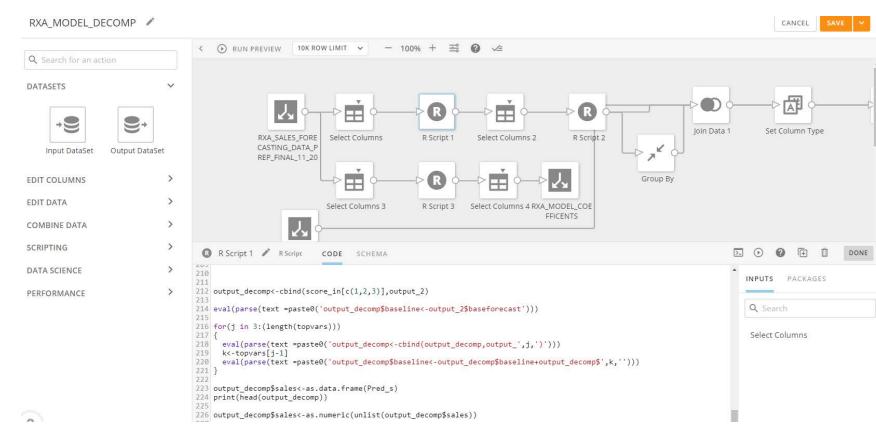
- Sales
- Inventory
- Pricing
- Marketing
- External Influences

USE A PREDICTION MODEL TO DECOMPOSE SALES

USE A PREDICTION MODEL TO DECOMPOSE SALES

Predict with the overall model Isolate each variable

- Set the variable equal to zero
- Predict with the reduced model
- Calculate difference


Scale each component to the total

```
Pred s <- data.frame(predict(fit, score))</pre>
for(j in 2:length(score))
     eval(parse(text =paste0('score ',i,'<-score')))
     eval(parse(text =paste0('score_',j,'$',k,'<-0')))
eval(parse(text =paste0('Pred_',j,' <- data.frame(predict(fit, score_',j,'))')))</pre>
     eval(parse(text =paste0('output_',j,'<-cbind(Pred_s, Pred_',j,')')))
   eval(panse(text -paste0('names(output',j,'\cd'[Full',',',')')))
eval(panse(text =paste0('names(output',j,'\sdifferences<-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\sfull-output',j,'\
output decomp<-cbind(input1[c(2)],data in[c(1)],output 2)
eval(parse(text =paste0('output decomp$baseline<-output 2$',year var,'')))
for(i in 3:length(score))
     eval(parse(text =paste0('output_decomp<-cbind(output_decomp,output_',j,')')))
    k<-pred vars[i-1]
     eval(parse(text =paste0('output decomp$baseline<-output decomp$baseline+output decomp$',k,'')))
eval(parse(text =paste0('output decomp$baseline<-output decomp$',response var,'-output decomp$baseline')))
eval(parse(text =paste0('output decomp$seasonality<-output decomp$',month var,'+output decomp$',year var,'')))
output decomp$c-cbind(output decomp[c(1,2)],output decomp$baseline,output decomp$seasonality)
for(j in 4:length(score))
     eval(parse(text =paste0('output decomp2<-cbind(output decomp2,output ',i,')')))
names(output decomp2)[names(output decomp2)=="output decomp$baseline"] <- "Baseline"</pre>
```

GET THE CODE AT: https://rxa.io/Domo

DEPLOYING IN DOMO

DUE TO ANALYSIS

DOMO GETS THE RIGHT INFORMATION INTO THE **DECSION MAKERS HANDS**

MARKETING MANAGER

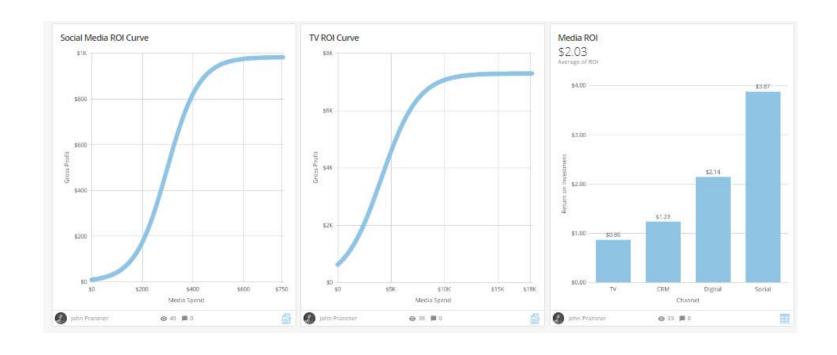
What Matters to Them:

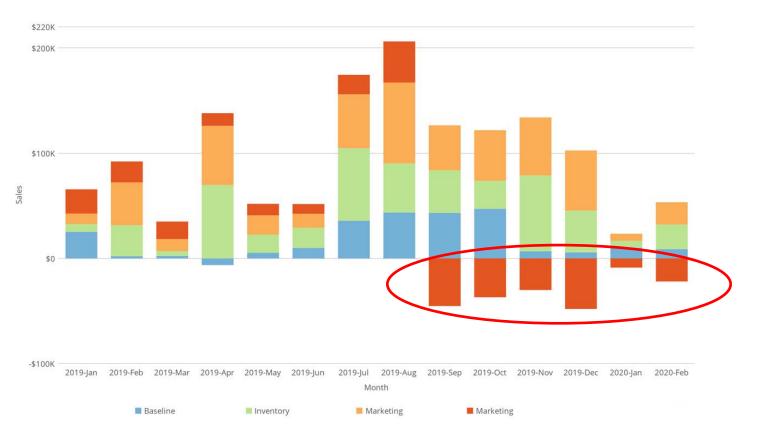
- Media Performance
- Optimization
- Web Traffic
- ROI
- Sales

MARKETING MANAGER

What They Can Control:

- Budgets
- Schedules
- Mix
- Strategy





PRODUCTION MANAGER

What Matters to Them:

- Inventory
- Costs
- Workforce
- Demand
- Sales

PRODUCTION MANAGER

What They Can Control:

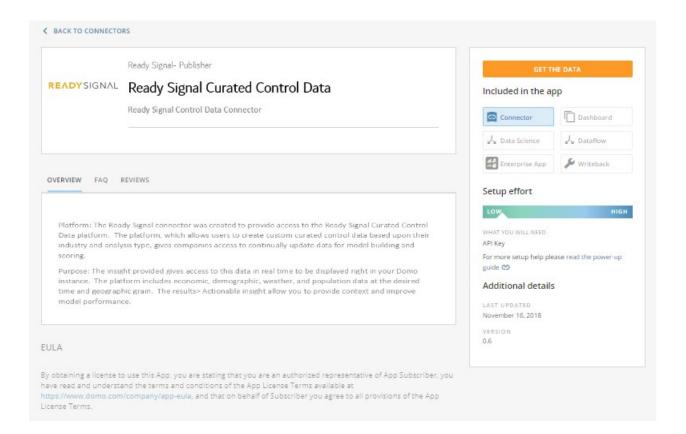
- Inventory
- Suppliers
- Production Calendar



External Influences

WHY CONTROL DATA

Accounts for external pressures


Improves forecast

Provides context

SIMPLE WITH DOMO

EXTERNAL PRESSURES

Unemployment

Interest rates

Construction

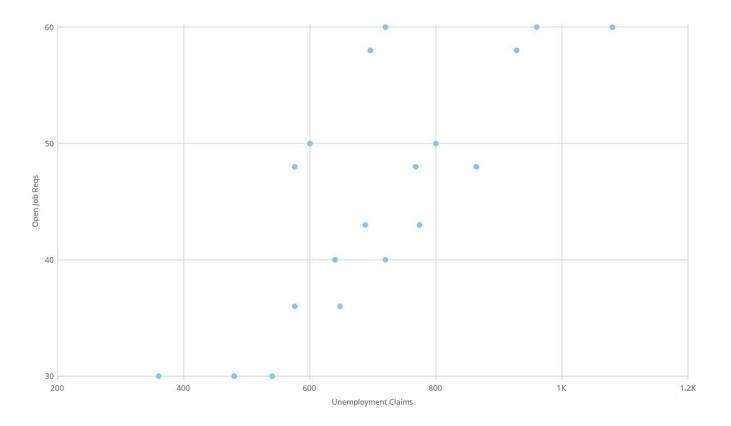
Weather

Consumer Confidence

IMPROVES FORECAST

Control data can significantly improve accuracy of models, but is often underutilized based on required effort and knowledge.

DOES A 60-DEGREE DAY MEAN FEWER MOTORCYCLE SALES?


PRODUCTION MANAGER VIEW

PRODUCTION MANAGER VIEW

EXECUTIVE TEAM

What Matters to Them:

- Sales
- Profitability
- Growth

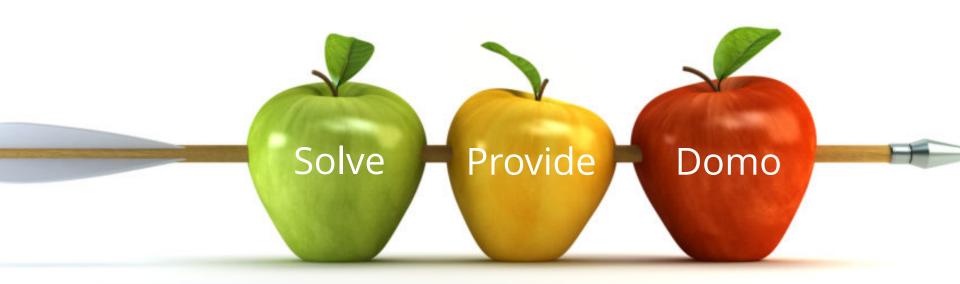
EXECUTIVE TEAM



What They Can Control:

- Strategy
- Resources
- Budgets
- Competitive Positioning

EXECUTIVE TEAM VIEW


EXECUTIVE TEAM VIEW

3 KEY TAKEAWAYS

THANK YOU

8

join us at our virtual booth!

